Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 704: 149705, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38430699

RESUMEN

The circadian clock in Drosophila is governed by a neural network comprising approximately 150 neurons, known as clock neurons, which are intricately interconnected by various neurotransmitters. The neuropeptides that play functional roles in these clock neurons have been identified; however, the roles of some neuropeptides, such as Trissin, remain unclear. Trissin is expressed in lateral dorsal clock neurons (LNds), while its receptor, TrissinR, is expressed in dorsal neuron 1 (DN1) and LNds. In this study, we investigated the role of the Trissin/TrissinR signaling pathway within the circadian network in Drosophila melanogaster. Analysis involving our newly generated antibody against the Trissin precursor revealed that Trissin expression in the LNds cycles in a circadian manner. Behavioral analysis further demonstrated that flies with Trissin or TrissinR knockout or knockdown showed delayed evening activity offset under constant darkness conditions. Notably, this observed delay in evening activity offset in TrissinRNAi flies was restored via the additional knockdown of Ion transport peptide (ITP), indicating that the Trissin/TrissinR signaling pathway transmits information via ITP. Therefore, this pathway may be a key regulator of the timing of evening activity offset termination, orchestrating its effects in collaboration with the neuropeptide, ITP.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Neuropéptidos , Animales , Drosophila melanogaster/metabolismo , Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Transducción de Señal , Relojes Circadianos/fisiología , Neuropéptidos/metabolismo
2.
Front Physiol ; 13: 886432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574472

RESUMEN

Drosophila's dorsal clock neurons (DNs) consist of four clusters (DN1as, DN1ps, DN2s, and DN3s) that largely differ in size. While the DN1as and the DN2s encompass only two neurons, the DN1ps consist of ∼15 neurons, and the DN3s comprise ∼40 neurons per brain hemisphere. In comparison to the well-characterized lateral clock neurons (LNs), the neuroanatomy and function of the DNs are still not clear. Over the past decade, numerous studies have addressed their role in the fly's circadian system, leading to several sometimes divergent results. Nonetheless, these studies agreed that the DNs are important to fine-tune activity under light and temperature cycles and play essential roles in linking the output from the LNs to downstream neurons that control sleep and metabolism. Here, we used the Flybow system, specific split-GAL4 lines, trans-Tango, and the recently published fly connectome (called hemibrain) to describe the morphology of the DNs in greater detail, including their synaptic connections to other clock and non-clock neurons. We show that some DN groups are largely heterogenous. While certain DNs are strongly connected with the LNs, others are mainly output neurons that signal to circuits downstream of the clock. Among the latter are mushroom body neurons, central complex neurons, tubercle bulb neurons, neurosecretory cells in the pars intercerebralis, and other still unidentified partners. This heterogeneity of the DNs may explain some of the conflicting results previously found about their functionality. Most importantly, we identify two putative novel communication centers of the clock network: one fiber bundle in the superior lateral protocerebrum running toward the anterior optic tubercle and one fiber hub in the posterior lateral protocerebrum. Both are invaded by several DNs and LNs and might play an instrumental role in the clock network.

3.
Cell Rep ; 39(2): 110668, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417715

RESUMEN

Animals display a body temperature rhythm (BTR). Little is known about the mechanisms by which a rhythmic pattern of BTR is regulated and how body temperature is set at different times of the day. As small ectotherms, Drosophila exhibit a daily temperature preference rhythm (TPR), which generates BTR. Here, we demonstrate dorsal clock networks that play essential roles in TPR. Dorsal neurons 2 (DN2s) are the main clock for TPR. We find that DN2s and posterior DN1s (DN1ps) contact and the extent of contacts increases during the day and that the silencing of DN2s or DN1ps leads to a lower temperature preference. The data suggest that temporal control of the microcircuit from DN2s to DN1ps contributes to TPR regulation. We also identify anterior DN1s (DN1as) as another important clock for TPR. Thus, we show that the DN networks predominantly control TPR and determine both a rhythmic pattern and preferred temperatures.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Ritmo Circadiano/fisiología , Drosophila/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster , Neuronas/fisiología , Temperatura
4.
J Comp Neurol ; 530(9): 1507-1529, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34961936

RESUMEN

Drosophila's lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split-Gal4 line, here we describe LPNs' morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness-promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies' morning and evening activity (M- and E-neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan-shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Neuropéptidos , Animales , Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Femenino , Neuronas/metabolismo , Neuropéptidos/metabolismo
5.
J Biol Rhythms ; 35(2): 207-213, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31856635

RESUMEN

Daily rhythms of physiology, metabolism, and behavior are orchestrated by a central circadian clock. In mice, this clock is coordinated by the suprachiasmatic nucleus, which consists of 20,000 neurons, making it challenging to characterize individual neurons. In Drosophila, the clock is controlled by only 150 clock neurons that distribute across the fly's brain. Here, we describe a comprehensive set of genetic drivers to facilitate individual characterization of Drosophila clock neurons. We screened GAL4 lines that were obtained from Drosophila stock centers and identified 63 lines that exhibit expression in subsets of central clock neurons. Furthermore, we generated split-GAL4 lines that exhibit specific expression in subsets of clock neurons such as the 2 DN2 neurons and the 6 LPN neurons. Together with existing driver lines, these newly identified ones are versatile tools that will facilitate a better understanding of the Drosophila central circadian clock.


Asunto(s)
Relojes Circadianos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Neuronas/fisiología , Factores de Transcripción/genética , Animales , Catálogos como Asunto , Relojes Circadianos/fisiología , Ritmo Circadiano
6.
Front Physiol ; 9: 1276, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30246807

RESUMEN

The fruit fly Drosophila melanogaster possesses approximately 150 brain clock neurons that control circadian behavioral rhythms. Even though individual clock neurons have self-sustaining oscillators, they interact and synchronize with each other through a network. However, little is known regarding the factors responsible for these network interactions. In this study, we investigated the role of CCHamide1 (CCHa1), a neuropeptide expressed in the anterior dorsal neuron 1 (DN1a), in intercellular communication of the clock neurons. We observed that CCHa1 connects the DN1a clock neurons to the ventral lateral clock neurons (LNv) via the CCHa1 receptor, which is a homolog of the gastrin-releasing peptide receptor playing a role in circadian intercellular communications in mammals. CCHa1 knockout or knockdown flies have a generally low activity level with a special reduction of morning activity. In addition, they exhibit advanced morning activity under light-dark cycles and delayed activity under constant dark conditions, which correlates with an advance/delay of PAR domain Protein 1 (PDP1) oscillations in the small-LNv (s-LNv) neurons that control morning activity. The terminals of the s-LNv neurons show rather high levels of Pigment-dispersing factor (PDF) in the evening, when PDF is low in control flies, suggesting that the knockdown of CCHa1 leads to increased PDF release; PDF signals the other clock neurons and evidently increases the amplitude of their PDP1 cycling. A previous study showed that high-amplitude PDP1 cycling increases the siesta of the flies, and indeed, CCHa1 knockout or knockdown flies exhibit a longer siesta than control flies. The DN1a neurons are known to be receptive to PDF signaling from the s-LNv neurons; thus, our results suggest that the DN1a and s-LNv clock neurons are reciprocally coupled via the neuropeptides CCHa1 and PDF, and this interaction fine-tunes the timing of activity and sleep.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...